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Abstract-Using the integral balance method the relation for the rate of solution of the horizontal surface 
of a solid body in a liquid is derived. The dissolution is governed by the free convection with a cellular 
motion As starting relations the mass balance of the dissolved substance and the total mass balance, both 
in the cell volume limited by the phase boundary and a reference plane parallel to it, are used The equation 
which expresses the mass conservation law for the dissolved substance when crossing the phase boundary. 
and the tiavier-Stokes equation in the Boussinesq approximation, written for the stationary state with 
negligible inertial term, are also employed. The resulting relation for the dissoiution rate is yielded in the 
form: .Vlr = BRa+, where B is a constant having a value from 0.13 to 0.15. This relation was tested experi- 
mentally for three systems; rock salt monocrystal---water, blue vitriol monocrystal--water, and compact 
polycrystaline mixture of NaNO, + KNO,-water. The dissolution uas found to be governed by the 
cellular convection with the mean ratio NulRuf equal to 0.151 & 0.014. This value is in good agreement 

with the theoretical estimation. 

NOMENCLATURE 

size of the horizontal cross section 
area of the cell; 
dimensionless constant, equations 
(11) (12) and (32); 
concentration; 
diffusion coeffkient ; 

dimensionless function, equation 
(27), : 
dimensionless function equation (14); 
dimensionless function, equation 
(14); 
acceleration due to gravity; 
dimensionless function, equation 

(22)I ; 
dimensionless integraL equation 

W),; 
mass flux density; 
dimensionless integral, equation 

(1%; 
dimensionless integral, equations 
(22), and f27), ; 

Nusselt number; 
Rayleigh number: 
area; 
velocity of convection; 
rate of dissolution; 
mass fraction; 
horizontal coordinate; 
characteristical horizontal length; 
vertical coordinate; 
distance of the reference plane from 
the phase boundary; 
distance from the leading edge; 
dimensionless quantity, equation 
(1%; 
dimensionless concentration, equa- 
tion (5)4; 
mean dimensionle~ concentration, 
equation (lo), ; 
dimensionless concentration differ- 
ence ; 
dimensionless quantity, equation 

(1%; 
1397 
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(1 - %W~C),=,,)/(1 - ct’o); 
dimensionless vertical coordinate, 
equation (5),; 

dimensionless distance of the refer- 

ence plane from the phase boundary, 
equation (5)3; 

dimensionless horizontal coordinate, 
equation (5), ; 
dynamic viscosity; 
kinematic viscosity; 
density: 

dimensionless velocity, equation 

(5)5. 

Subscripts 

o, phase boundary : 

m, bulk ; 

H, hexagonal cell; 

R roll cell; 

s, solid phase. 

INTRODUCTION 

IF AN infinite horizontal surface of a solid body 
is dissolved in a stagnant liquid, and an inverse 

density gradient is produced by the concentra- 
tion field, cellular convection occurs in the 
liquid [l]. In a wide range of dissolution rates 

the cells are laminar at the neighbourhood of 
the phase boundary, and do not change their 
positions with time. The shape of the cells can 
be hexagonal or that of rolls. 

Most of the theoretical and experimental 
studies concerning cellular convection are con- 
lined to the case of the heat transfer through a 

thin horizontal liquid layer heated from below. 
A boundary layer theory for the cellular motion 
has also been worked out, but its validity is 
restricted to Prandtl numbers approaching to 
one in the case of rigid boundaries [2]. 

However, mass transfer under cellular con- 
vection is no less technologically important 
than heat transfer and, from the experimental 
point of view, it has some advantages: measure- 
ment of mass transfer velocity is relatively easy, 

and the traces of cells remain visible on the 
corrosion relief as a network of cavities. 

In this study the problem is theoretically 
solved by the integral balance method. The 
total mass balance and the balance of the dis- 

solved substance are expressed for a part of the 
cell bounded by the surface of the dissolved 
body and the reference plane lying in the given 
distance from this surface. The balance of mo- 
mentum is expressed by the Boussinesq approxi- 
mation of the Navier-Stokes equation, in which 
the inertial term is neglected. 

The experiments are carried out in such a way 
that the lower horizontal surface of a solid body 
is dissolved in a large volume of liquid at a 
constant temperature. The body and the liquid 

are selected so as to ensure that the density of 
the solution increases with increasing concentra- 
tion of the dissolved substance. 

THEORETIC:\L 

The vertical cross-section of a cell is schematic- 
ally shown in Fig. 1. The dissolved body is 

placed above and the liquid below the phase 
boundary (the strong arched line). There are 
introduced coordinates x and y with an origin 
located in the point of intersection of the cell 
axis with the phase boundary; the y-axis is 

vertical and is directed from the phase boundary 
into the bulk; the x-axis is perpendicular to it. 
The half breadth of the cell is denoted by X. In 
the distance Y a plane parallel to x-axis is shown 

FIG. 1. Scheme of a cell 
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which bounds a volume for the integral balances 
in the upper part of a cell. 

For simplicity the following binary system is 
considered: the dissolved solid as a single- 
component and the liquid consisting of two 
components one of which being identical with 
that of the dissolved solid. The phase boundary 
is impervious to the liquid and no chemical 
reaction proceeds between the two components. 
The dissolution is consequently governed by a 
diffusion in the liquid phase and the solution on 
the phase boundary is saturated. A stationary 
state and zero heat of dissolution is assumed, 
and hence the density gradient is determined 
only by the concentration field. 

Since the shapes of the cavities remain un- 
changed in the stationary state, the vertical 
velocity of dissolution remains constant and 
can be expressed by the relation (for the deri- 
vation of which see Appendix): 

SD ac 
v = -p,A ay y=. s I 

dS (1) 

A 

where& - (1 - w,(apiac),,,,)l(l - w,,), w,is the 
saturated mass fraction of the dissolved sub- 
stance, p is the local density of the solution, m is 
the apparent density of the dissolved body, c 
is the concentration, D is the binary diffusion 
coefficient, dS the element of the area and A is 
the area size of the phase boundary’belonging to 
one cell. 

Total mass balance and the mass balance of 
the dissolved substance may be written for a 
volume bounded by the phase boundary, the 
vertical walls of the cell and the plane y = Y 
In the stationary state the total mass of the liquid 
and the mass of the dissolved substance both 
passing across the surface of this volume and 
equal to zero. No mass passes the vertical walls 
because of a zero horizontal velocity component, 
ahd a symmetric maximum or minimum con- 
centration on these walls. If neglecting the mass 
of the dissolved substance crossing the phase 
boundary, as compared with the total mass flow 

through they = Y plane, the continuity equation 

becomes simply 

s u dS = 0. (2) 

a 

The dissolved substance crosses both the phase 
boundary and the plane y = Y hence 

Dj$i,_odS + jcudS = 0. (3) 

A A 

The flux of the dissolved substance resulting from 
diffusion is neglected as compared with that 
for the convection on the plane y = I: In 
equations (2) and (3) u is the value of the vertical 
velocity component of the convection. The area 
of the plane belonging to one of the cells is 
assumed equal to A which is valid when the 
cell-cavity depth is small in comparison to its 
breadth. 

The balance of momentum can be expressed 
by the Boussinesq approximation. In the neigh- 
bourhood of the phase boundary the convection 
is very slow and the inertial term can be ne- 
glected. The equation of motion for the vertical 
velocity component can be written as follows: 

pvu = g)g(c - E) 

where 2 = l/Af,c dS is the mean concentration 
at the plane y = Y The dimensionless length, 
the concentration and the vertical velocity com- 
ponent are defined by the relations: 

< = x/X, ‘I = y/y, H = YfX 

Y = (co - CMCO - c,) (5) 

The definition of dimensionless velocity rp is 
based on the form of equation (4) because no 
reference velocity is available. 

Introducing equation (5) into equations (l)- 
(4), after some arrangement the following equa- 
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tions can be obtained: 

x3 = i PD 

J G%lw(% - c,kJ 

jqdS=O 
A 

p(p = 7 - y 

where 

(6) 

(7) 

(8) 

(9) 

> (10) 

Connection between equations (6) and (7) gives 
for the rate of dissolution : 

v=BG p ; (co - cJ4 D'gp- ’ ! 
: 

(11) 
s 

where 

B = (z2J)+. (12) 

The quantity B defined by equation (12) is only 
dependent on both the dimensionless con- 
centration distribution and the dimensionless 

velocity distribution in the cell. 
As is common in the boundary layer theory, 

these distributions can be expressed in the form 
of simple elementary functions which fullil the 
boundary conditions. For the cell the following 
boundary conditions come into question. 

On the phase boundary the solution is satu- 
rated, i.e. c = co and 

y=Oatn=O. (i) 

On the vertical cell walls the horizontal velo- 
city component is zero and the vertical velocity 
reaches its maximum or minimum (according 

to the flow direction, up or down). The same must 
hold in the cell axis: 

c7p/ZC:=O at <=O and r- 1. (ii} 

In order to estimate the concentration and 
velocity distribution in the cell, the dimension- 

less thickness, H, must be specified in terms of 
these distributions. The relative concentration 
difference between the cell axis and the vertical 

cell wall A?(n) = ~(1, VI) - ~(0, q) = (~(0, J) --- 
c(x, y))/(c, - c,) equals zero both on the phase 
boundary and in the bulk. It suggests to choose 
the distance of the reference plane, y = Y from 
the phase boundary to have the maximum value 

of Ay(n) in the reference plane 

%4) ~ = 0 at tl = H. 
?yI 

Considering that in this distance the horizontal 
velocity component is minimum and may be 
assumed zero, the continuity equation gives: 

(iv) 

The case when liquid streams up along the cell 

axis and down along the cell walls is now dealt 
with in detail. 

For the dimensionless concentration distri- 
bution the following function can be established. 

~(ir”, II) = (a + @(O)f(rlH) (13) 

where functions g(t) and f'(q/H) hold these 
properties: 

g(0) = 0, g(l) = 1 

ddt) ~ > 0 at <E (0,l) 
d< 

.f’(O) = 0, f”(1) = 0 (14) 

df h/H) ___ > 0 at n E (0, H) 
4dH) 

and c1 and 6 are constants. It is easily seen that 
the conditions (i) and (iii) are fulfilled under 

~(0, H) 

C(=fo’ 

6 _ ~(1, H) - ~(0, H) 

f(l) . 
(15) 
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In the case of a roll-cell (i.e. rectangular cell) 
Cartesian coordinates are convenient. Then 
equations (8)-( 10) can be written : 

d2dL W _ 
dt2 = Y(H) - Y(5, HI 

JR = j Y(t, f%‘(& H) d5 
0 

(17) 

F (18) 

Equation (17) is valid under condition (iv). 
Introducing equation (13) into equations (17) 
and (18) and employing equation (16) 
boundary condition (ii) it is obtained: 

I 

R 
= 7(H) f’(O) -- 

H f(l) 

where 

(~(5, HI = AYW)W 

JR = (ArWh2 LR 

s(5) d5 d5 d5 - it<’ - +) J g(5) d5 
0 

The value of B, is n:w : 

BR = (LR(f'(o)/~(1)2)'(Y(H) AYWUH)~. 

and 

(19) 

(20) 

(21) 

(22) 

(23) 

In the case of hexagonal cells it is convenient 
to replace the hexagon by a circle of diameter 
equal to the length of the hexagon side. Then 
5 and q can be regarded as cylindrical co- 
ordinates. Accordingly dS = 2X2x( d< and A = 

xX2. Equations (Q-o-(O), rewritten for cylindrical 

coordinates 4 and I], lead after an analogous 
manipulation to the following result: 

(24) 

JH = (Ay(H)2L, 

B, = (L~(f’(0Y.01)~)~ (Y(H) Ay(H)/H)” 

where 

(25) 

(26) 

L, = 2 i s(5) E(5) 5 d5 
0 

(27) 

0 0 0 0 0 

1 

x s(5) 5 dt d5 d5 - i(t’ - +I s s(5) 5 d5. 
0 

In accordance with experience B can be assumed 
as a constant independent of the Rayleigh 
number value. However, it is seen from equa- 
tions (6) and (7) that the integrals I and J need 
not be constant. It is known that the cell size 
X decreases very slightly with increasing Ra [3]. 
Considering for the sake of simplicity X as a 
constant and defining 

% = (aP/ac) @O - C,~JX~/PD 

and 

Nu, = up,X~(cD(c, - c,)), 

the integrals I = Nu, and I/J = Ra, may vary 
with the concentration difference (co - c,) and 
thus with the rate of dissolution u at a given 
system. On using equations (19) (21) and (23) or 
(24~(26) the numbers 

and 

Na, = (?(H)/H) (f’(O)/_0 1)) 

Raj = B,t/(L’ Ay(H)) 

are yielded. From this it can be concluded that, 
if the horizontal cell size X is constant, the 
ratio of the relative mean concentration at 

D 
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v] = H to the dimensionless eddy layer thickness 
y(H)/H increases and the maximum relative 
concentration difference Ay(H) decreases with 

the increasing rate of dissolution or with in- 
creasing RuX while the ratio 1/(H) Ay(H)/H 

remains constant if B is independent on RuX. 
The experimental study of the temperature 

distribution in the cell in the horizontal liquid 
layer heated from below is due to Leontiev 

and Kirdyashkin [4]. They found that the 
ratio of the cell size to the liquid layer thickness 
is equal to 1 in the region of the stability loss 

and 2 in the region of Ra > Rq,. It follows 
that for the roll-cell H < i (the thickness of the 
dimensionless liquid layer can be maximally 

equal 2H) and for the hexagonal-cell H < :. 
The Fig. 7, p. 1465 published by Leontiev 

and Kirdyashkin [4] has served to calculate 

*y(H) c 0.4 and Ay(H) < 0.5 for the hexagonal 

cell. 
The constancy of B can be secured, for 

example, by y(H) = 7(H1)(H/H,)” and A?(H) = 
Ay(H,)(H/H,)‘-” where H, refers to any 
reference state. If H, = i, y(H 1) = Z$ and Ay(H i) = 
3 is taken for the cast of the roll-cell and H, = 
0.25, v(H,) = 0.4 and Ay(H,) = 05 in the case 

of the hexagonal cell, 

(V(H) Ay(H)IH) = (V(H,) Ay(Hi)lH,) 

and equals 0.5 and 0.8 for roll and hexagonal 

cells respectively. 
Consider the most simple model of the 

concentration distribution in a cell : 

g(i”) = L f’(vllH) = v/H. (28) 

From equations (19) and (21t(27) follows that 

.f”(O) = 1, j’(l) = 1, L, = 1,:120, L, = l/27(), 
B, = (l/480)+ = 0.128 and B,, = (0.64/270)’ =I 
0.133. Taking 

y(S) = i”, j’(r//H) = qiH I?_‘)) 

then B, = 0.128 and B, = 0149. These two 

values for hexagonal cells coincide well with 

the empirical formulas for the heat transfer 
from the downward-facing horizontal surfaces. 
For example Fishenden [5] reports the rela- 
tionship Nu = 0.14 Ra :. 

THE PROPERTIES OF THE ITSED SYSTEMS 

For the investigation of the cellular convec- 
tion there were used single crystals of blue 
vitriol, single crystals of rock salt and a compact 
polycrystaline mixture of NaNO, and KNO, 
with the weight ratio 1:0.807: these substances 
were dissolved in their aqueous solutions of 
different concentrations at 20’ C. 

The physical properties of blue vitriol and 
rocksalt and their aqueous solutions are avail- 
able in the literature [5,6] and listed in Table 1. 

The physical properties of the mixture 
NaNO, + KNO, of weight ratio 1: 0.807 and 

its aqueous solutions had to be measured. They 
are listed in the last row of Tabic 1. 

For the weight ratio 1: O-807 both components 
in their aqueous solution are in phase equilibrium 

with the two corresponding crystal phases at 
20°C. The weight concentration of NaNO, 
and KNO, in this saturated aqueous solution 
was first determined after Lung, titrating by 
KMnO, solution (only nitrite content) and then 
the total content of nitrate + nitrite by means 
of evaporation residue. It was reasoned that the 

Table I. Properties of the systems u.d 

System Density of Saturated Diffusion Viscosity of solution Density of solution 

solid concentration coefficient \‘. 10’ (cm2/s) P Wcm3) 

ps (g/cm31 c0 (s/cm? at saturated 
concentration 

II,, x IO6 (cm’,s) 

CuSO,. 5H,O-Hz0 
NaCl-H,O 
(NaNO, + KNO,kH,O 

2.286 0,326 0.33 t-004 + 2.420 0.9882 + 0.6424~ - 0.0904~’ 

2.163 0.317 1.4 I.004 +0.653c + 3.456~’ 0.9982 + 0.687<, - 0.154~’ 

2.146 0.990 3.02 1~004+3~170c3 0.9982 + 0.565~ 



SOLUTION OF A BODY AT ITS HORIZONTAL SURFACE 1403 

ratio found should ensure the most uniform 
dissolution of the polycrystalline compact mix- 
ture formed by the same ratio of both com- 
ponents. 

The densities of the solutions were measured 
pycnometrically and the viscosities of the 
solutions were measured by the Ubbe’s tube 
viscosimeter. 

The diffusion coefficient was calculated from 
the data of dissolution of a vertical cylindrical 
specimen under conditions OF the density free 
convection along with the following formula: 

0 = @L&&r!25 
PS ( (PO - Pm) SG 

> 
+ 

POZ . 
(30) 

The dissolution rate, v, was measured at live 
concentrations, c,, within the range 0.62487 
g/cm3. From the slope of the dependence vzf 

on ((co - c,)/PJ ((P, - P,)/P,)*, found by the 
last square method, the effective binary dif- 
fusion coefficient, Do, was obtained. 

THE MEASURING OF THE RATE OF 
DISSOLUTION 

The magnitudes of the dissolved surface area 
of single crystals laid within the range of 
l-5-4 cm’. In the case of blue vitriol single 
crystals surfaces of the Miller’s indexes [l lo] 
and/or - [ 1 lo] were chosen. The specimens of 
the NaNO, + KNO, mixture were prepared 
by pouring the melt into preheated glass rings 
placed on glass plates followed by careful 
cooling. 

9 

8 
7 

IO 

FIG. 2. Scheme of the apparatus for the measurement of the 
dissolution rate. 

The resulting tablets were compact and their 
surfaces were perfectly smooth. The surface 
areas used for the dissolution experiments were 
of a mean magnitude 6 cm’. 

The range of concentrations for the solutions 
used in dissolution experiments was relgtively 
wide: from pure water up to (co - c,) c 
10e2 g/cm3. The dissolution rate was measured 
on an adapted sedimentation balance (Fig. 2). 
The part of surface of single crystal or tablet 8 
which was not assigned for dissolution was 
isolated by paraffin wax 9 served at the same 
time for the connection of the dissolved body 
with the annulus 7 of the balance beam. 

The isolation was made in such a way that 
the single crystals were put on a glass plate, 
with their surfaces intended for dissolution 
faced downwards, and embedded by molten 
paraffm wax. In the case of polycrystalline 
samples the surfaces intended for dissolution 
were protected by a rubber sucker and the 
samples were submerged into paraffin wax 
melt. The edges of unprotected surfaces were 
subsequently adapted by organic plasticine. 

The polycrystalline surfaces intended for dis- 
solution had circular shapes, and those of blue 
vitriol were in rhomboedrical or rectangular 
shapes. In the case of the rock salt the shapes of 
these surfaces varied to some extent with 
different samples. 

5 f 1. 
I I 

0 2000 4000 6000 

t s 
FIG. 3. Time-dependence of the mass loss of NaNO, + 
KNO, specimens at their dissolution in solutions of the 
following concentrations in g cm3 : 0.806 (A), 10.850 (L), 

0.900 (O), and 0.927 (A). 
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The solution 10 was held at the temperature 
20 + O.l”C under tempering bathing. The change 
of the balance sensitivity was realized by the 

weight 6 moving on the tongue of the balance 11. 
The luminous ray from the light source 1 passed 
through the diaphragm 2, rebounded from the 

mirror 5 attached on the tongue, and impinged 
into the screen 3 equipped with a scale from 
which the weight loss of the dissolved body was 
read off. 

The value of the mass flux density ,jO was 
calculated from the linear part of the time 
dependence of the weight loss per unit area by the 

last square method. An example of such a 
dependence is shown in Fig. 3. 

EXPERIMENTAL RESULTS AND DISCtiSSlON 

Taking the logarithm of equation (1 I) and 
using relations j, = pp and (?p/& z (pO - 

P,)/(c, - c,) gives: 

log lo : = Slog 
&DO@0 - cm) 

(PO - Pm) Y + log B, 

r+Po 
(31) 

Since the viscosity and the diffusion coefficient 
are not independent of concentration, the bulk 

viscosity, p,, and the diffusion coefficient of 
the saturated solution, Do, were used. Equa- 
tion (31) is suitable for testing of equation (11) 
by means of experimental results. 

is 0.151 * 0.014 for all measurements; if cal- 

culated for separate systems, then B for the 
blue vitriol is 0.137, for the rock salt is 0.141 
and for the mixture of NaNO, + KNO, is 
0.165. Figure 5 shows that B is a constant over 
the whole range of concentration used. 

On Fig. 4 the termj,~eD,(c,, - c,) is plotted 
vs. the term (p. - p,T_)g/pXD,, both in the 
logarithmical scale. It is evident that the line 

with a slope equal to J is in good agreement 
with the experimental points. It should be 
noted that the complex quantities used are 
not dimensionless, namely the former is equal 
to the Nusselt number divided by the charac- 
teristic length and the later equals the Rayleigh 
number divided by the third power of the 
same characteristic length. Regarding to the 
exponent : the characteristic length has no 
particular meaning and so equation (31) be- 
comes consequently equivalent to the relation : 

The dissolved surface developed corrosion 
reliefs showing the cellular character of the 
convection in the liquid. The most distinct 
corrosion cavities were observed on the sur- 
faces of the monocrystals (Figs. 6 and 7). When 
dissolving in pure water or dilute solutions the 
pattern is hexagonal, though the shape of 

0 

1 1 

.2 - 
_A 

3 

Nu = B Rat. (32) FIG. 5. Dependence of B on jo/EL),,((.,, - c, J. 

FIB. 4. The dependence of jOjzD,(<, j .I on ii’<, - /‘,)I/, 
pIDci for the mixtures NaNOL + KNO,> (0). monocrystals 

CuSO, .5 H,O ( ) and NaCl (01. 

The mean value of B calculated as a ratio 



FIG. 6. The corrosion relief of NaCI, co-cm = 0.317 g/cm3, mgt. 8 X. 

[fucing page 14041 



FIG. 7. The corrosion relief of NaCI, c’“--c, 0.010 g/cm”, mgt. 5 
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cavities is considerably irregular. The pattern 
changes if the magnitude\ of the term 
(pO - ~Jg/p~&, falls under the value of 1 to 
4~0+~ cmm3 and exhibits then a dependence 
on the shape of the dissolved area. The cell 
shape is that of rolls lying perpendicular to the 
normal direction and pointing to the centre of 
the dissolved area. If the shape of the dissolved 
surface is circular, the shapes of roll cells are 
wedgewise and not rectangular deviating there- 
fore from the assumption given in the theoretical 
part. This discrepancy, however, is not that 
important because the dissolved surface area is 
large. No dependence of the cell size X vs the 
term 

was possible to establish. The mean diameter 2X 
of a hexagonal cell was about 0*06-010 cm and 
the mean width of a roll was about O-OH.16 cm. 
That supports the assumption made in the 
theoretical part that X can be regarded as a 
constant. The estimation of the values of the 
maximum relative concentration difference, 
Ay(H), and that of the dimensionless eddy layer 
thickness, H, were also attempted. Choosing 
the value (p,-, - ~~)g/p~& = 2.10’cm -3 from 
the period of transition between rolls and 
hexagons andX z 003 cm, then Ra, = 2.10*. 
@033 = 5400 and Ay(H) = (B/L)* Ra, f z (O-14. 
270)+ .5400- + z 0.35. The Nusselt number Nu, 
= BRa$ z 0.14. 5400* z 2.5 and H = (f(l)/ 
f’(O))(j$H)/Nu,) = @4/2*5 = 0.16. These results 
are in good agreement with estimations 
Ay(H) 9 0.5 and H 9 0.25 which were used in 
the theoretical part. 
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APPENDIX 

?he Mass Transfer Rate at the Moving Boundary 

Equation (1) expresses the mass conservation law for the 

dissolved substance at its transition from the solid to the 

liquid phase. It is valid for the system in which the solid 

phase is single-component and the liquid is composed by 

two components, one of them being identical with that of the 

dissolved substance; the dissolution is governed by the 
diffusion in the liquid phase. 

In the infinitesimal liquid layer on the phase boundary 

the longitudinal convection can be neglected. In this layer 

only the diffusion and the cross convection due to the phase 

boundary motion occur. The continuity equation for the 

dissolved substance takes therefore the form: 

UP, = i. = -DoW~~)y=, + uyco (33) 

where c is the concentration of the dissolved substance in 

the liquid and p is the liquid density. The boundary is 

unpermeable for the other liquid component and so 

0 = - W(P - c)/~Y 1 y=o + uy(po - ~0). (34) 

The diffusion coefficients D, are the same in both equations 

(33) and (34) because the case of binary diffusion is discussed. 

uy is the velocity related to the unmoving coordinates with 

which the liquid follows the moving boundary. 

Eliminating uy from equations (33) and (34) one obtains: 

i0 = --WWY)~=~((~ - w&)/(1 - wO)) (35) 

where w = c/p is the mass fraction of the dissolved sub- 

stance and pb = (dp/&),_. Relation (1) is so derived. 

Using the well-known thermodynamical relation for the 

partial specific volume 

V= l/p + (1 - w)(a(l/p)/aw) (36) 

where v is the partial specific volume of the dissolved 

substance, carrying out the arrangement 

WlP)/~w = WPY~(ClP) 

= - (llP)(~PlW/(l - w@Plw) (37) 

consequently 

ap/ac = (1 - vpy(l - iq (38) 

one obtains after introducing the last relation into equation 
(35): 

j. = -&(W%&,/(l - Qn) (39) 
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which is the relation found by Cooper [5] by a different the relation (39) can be rewritten into the following form: 
method. 

Using another arrangement /o = -p&@y’?y),=o!(l u,) (41! 

l?c/sy = (&/aw)(l%v/~y) = (p/y1 - &p/dc))(dw/?y) 
which is currently used in chemical engineering. 

=pcc:w/ay)(l - Vpp)/(l -- I\‘) (40) 

DISSOLUTION A LA SURFACE HORIZONTALE D’UN CORPS SOLIDE GOUVERNEE 
PAR LA CONVECTION NATURELLE EN MOUVEMENT CELLUL,4IRE 

RCsume~~Par la methode du bilan integral, on a etabli la relation pour la vitesse de dissolutton de la surface 
horizontale d’un corps solide dans un liquide. La dissolution est ici gouvernee par la convection naturelle 
de densite en mouvement cellulaire. On a utilise comme relations de depart le bilan massique de la substance 
en dissolution et le bilan massique total appliques tous les deux dans le volume cellulaire limite par la 
frontiere de la phase et un plan de reference parallele. On a employe aussi l’equation exprimant la loi de 
conservation de masse pour la substance dissoute traversant la frontitre de la phase et l-equation de 
Navier Stokes dans l’approximation de Boussinesq &rite pour I’ttat permanent avec un terme d’inertie 
ntgligeable. La relation resultante pour la vitesse de dissolution s’ecrit sous la forme Nu = B Rai, B Ctant 
une constante pouvant prendre des valeurs entre 0,13 et 0,15. Cette relation a et& experiment&e pour trois 
systemes: monocristal de sel solideeeau. monocristal de vitriol bleu ~-eau et melange polycristallin de 
NaNO, et KNO,-eau. 

On trouve que la dissolution est gouvernee par la convectton cellulaire avec le rapport moyen NwRa: 
egal a 0,151 + 0.014. Cette valeur est en bon accord avec l’estimation theorique. 

AUFLOSUNG EINES FESTKORPERS AN SEINER HORIZONTALEN OBERFtiCHE 
BE1 FREIER KONVEKTION IN ZELLSTRGMUNG 

Zusammenfassung-- Mit der Methode des integralen Gleichgewichtcs wird eine Be/iehung fur die Ge- 
schwindigkett der Auflosung emes Fcstkorpers an seiner horizontalen Oberflache in Ftiissigkeit abgeleitet. 
MaBgebend fur die Aufliisung ist hier die freie Konvektion in Zellstriimung. Ausgangsbeziehungen sind die 
Massengleichgewichte der gel&ten Substanz und der gesamten Masse, beide in dem ZeIIvoIumen. das 
durch die Phasengrenze und einer dazu parallelen Bezugsebene begrenzt wird. Eingeftihrt werden weiterhin 
die Beziehungen aus dem Massenerhaltungssatz IIir die geltiste Substanz beim merschreiten der Phasen- 
grenze, aowie die Navier-Stokes-Gleichung in der Approximation von Boussinesq fiir den stationaren 
Zustand mit vernachllssigbarem Trlgheitsterm. Die sich damit ergebende Beziehung hat die Form : 
Nu = B &I+, wobei B eine Konstante zwischen 0,13 und 0.15 ist. Diese Beziehung wurde fur drei Systeme 
exoerimente]] nachgepruft: monokristallines Steinsalz-Wasser. monokristallines Kupfervitriol-Wasser 

und NaN02-KNO, in polykristallinem Gemisch-Wasser. Es wurde gefunden, dass die Auflosung durch 
die Fellkonvektion mit einem mittleren NujRu*-VerhBltnis zu 0,151 f 0,014 bestimmt wurde. Dieser Wert 

stimmt mit der theoretischen Abschltzung gut iiberein. 

I’,\CTHOPEHI’iE I’OPM30HTr~JIbHO~ IIOBEPXHOCTM TBEP~Ol’O ‘PEJIIA 
BCJIE!tCTBI/IE HYEHCTO~ CBOHOJIHOH HOHREHIH’H’I 

.\HHOT&%~XUl--C llOMOII(bIO IiHTe~~)aJIbHOI'O 6aJIaHCIlOI% VeTO$l IlO.~,VW?HO 13bIpameHIIe ,VH 

CIiOpOCTII pacTBopeHIIH 130pPK30HTanLrIOii IIOBepxHOCT~I TRep;rOrO Texa B iKkI~IiOCTk1. CKOpOCTb 

f'"c'TBOpeHIIFI oIIpe~e.meTCfl cBO6OHHOir WIeMcTOii KOIIB~~KI@~eti. r< HaYeCTW IlCXO,THbIY 

~['"13HC""ii IICIIO.Vb3yIOTC5l yI'aBII"H"" COXpaHeH"H %aJIaHra MaCCbl, 3anMCaIIHbIV IiaIc ;1JlFi 

ofinema n<refiiirr. orpatrnsetrnoro rpamrrrefi pasxe:ra ct)aa, Tali M AJIfI IUIOCKOCTII CpaBHeHRR 

napanne;rbaoiz rii, ypaBHeHIIe 3aKOHa COXpaHeHIfR IiO;lllYeCTBa. paCTBOpeHHOI.0 BeI4eCTBa 

II~II rIepeceseHirrf rpamubI pannena m ypameme HaBLe-CTOKCa 13 upncinnHieunn Eyccunecna 
x;In CTaIJIIOHapHLIX yCJIOBH8, KorAa llHepI\kIOHHbIfi weII npeKeFpewx8Mo Max. noxyseHHoe 

rze T - nocTomHaf3 ~e.xmmxa, paBHasI O,13 + 0,15. Ypannenrie nposepnnocb nncnepu- 
MeHTa;lbHO HJIcl TpeX CHCTeM : MOHOK~,IlCTaJIJI KaMeHHOii COJIM-BOAa; YOHOKptICTaJin MeAHoro 

riynopoca-Boxa; IIonSKI)“cTa”~““ecKa~ CMeCb NaNos-KNOa - BOxa. 06HapyxeH0, 4To 

CIiOpOCTL paCTBopeHnR 3aBliICIlT OT WieIICTOfi IiOHBeKtVII1, OIIEICbIBaeMOfi OTHOIIIeHHeM 

Nu/&“~ = 0,151 i0,,,14, qTO XOI’O”I0 COT;IHCYPTCfI C TeOpt?TWleCKtfM PaCqeTOM. 


