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Abstract—Using the integral balance method the relation for the rate of solution of the horizontal surface
of a solid body in a liquid is derived. The dissolution is governed by the free convection with a cellular
motion. As starting relations the mass balance of the dissolved substance and the total mass balance, both
in the cell volume limited by the phase boundary and a reference plane parallel to it, are used. The equation
which expresses the mass conservation law for the dissolved substance when crossing the phase boundary.
and the Navier-Stokes equation in the Boussinesq approximation, written for the stationary state with
negligible inertial term, are also employed. The resulting relation for the dissolution rate is yielded in the
form: Nu = BRa*, where B is a constant having a value from 0-13 to 0-15. This relation was tested experi-
mentally for threv systems; rock salt monocrystal-water, blue vitriol monocrystal-water, and compact
polycrystaline mixture of NaNO, + KNOj-water. The dissolution was found to be governed by the
cellular convection with the mean ratio Nu/Ra* equal to 0-151 & 0-014. This value is in good agreement
with the theoretical estimation.

NOMENCLATURE Nu, Nusselt number;
A, size of the horizontal cross section Rag, Rayleigh number;
area of the celi; S, area;
B, dimensionless constant, equations u, velocity of convection;
(11), (12) and (32); v, rate of dissolution;
c, concentration; w, mass fraction;
D, diffusion coefficient; X, horizontal coordinate;
E(&), dimensionless function, equation X, characteristical horizontal length;
(27),: ¥, vertical coordinate;
f(n/H), dimensionless function equation (14); Y, distance of the reference plane from
g(&), dimensionless function, equation the phase boundary;
(14); z, distance from the leading edge;
g, acceleration due to gravity; @, dimensionless quantity, equation
G(8), dimensionless function, equation (15),;
(22);; 7, dimensionless concentration, equa-
1, dimensionless integral, equation tion (5),;
(10),; 7, mean dimensionless concentration,
J» mass flux density; equation (10),;
J, dimensionless integral, equation Ay, dimensionless concentration differ-
(10},; ence;
L, dimensionless integral, equations d, dimensionless quantity, equation
(22), and (27),; (15)3;
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. (1 = wo(@p/ac) - (T — wo):

", dimensionless vertical coordinate,
equation (5),;

H, dimensionless distance of the refer-
ence plane from the phase boundary,
equation (5),;

¢, dimensionless horizontal coordinate,
equation (5), ;

U, dynamic viscosity:

v, kinematic viscosity;

0, density;

Q, dimensionless velocity, equation
(5)s.

Subscripts

0, phase boundary;

o0, bulk:

H, hexagonal cell;

R, roll cell;

s, solid phase.

INTRODUCTION

IF AN infinite horizontal surface of a solid body
is dissolved in a stagnant liquid, and an inverse
density gradient is produced by the concentra-
tion field, cellular convection occurs in the
liquid [1]. In a wide range of dissolution rates
the cells are laminar at the neighbourhood of
the phase boundary, and do not change their
positions with time. The shape of the cells can
be hexagonal or that of rolls.

Most of the theoretical and experimental
studies concerning cellular convection are con-
fined to the case of the heat transfer through a
thin horizontal liquid layer heated from below.
A boundary layer theory for the cellular motion
has also been worked out, but its validity is
restricted to Prandtl numbers approaching to
one in the case of rigid boundaries [2].

However, mass transfer under cellular con-
vection is no less technologically important
than heat transfer and, from the experimental
point of view, it has some advantages: measure-
ment of mass transfer velocity is relatively easy,
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and the traces of cells remain visible on the
corrosion relief as a network of cavities.

In this study the problem is theoretically
solved by the integral balance method. The
total mass balance and the balance of the dis-
solved substance are expressed for a part of the
cell bounded by the surface of the dissolved
body and the reference plane lying in the given
distance from this surface. The balance of mo-
mentum is expressed by the Boussinesq approxi-
mation of the Navier-Stokes equation, in which
the inertial term is neglected.

The experiments are carried out in such a way
that the lower horizontal surface of a solid body
is dissolved in a large volume of liquid at a
constant temperature. The body and the liquid
are selected so as to ensure that the density of
the solution increases with increasing concentra-
tion of the dissolved substance.

THEORETICAL

The vertical cross-section of a cell is schematic-
ally shown in Fig. 1. The dissolved body is
placed above and the liquid below the phase
boundary (the strong arched line). There are
introduced coordinates x and y with an origin
located in the point of intersection of the cell
axis with the phase boundary; the y-axis is
vertical and is directed from the phase boundary
into the bulk; the x-axis is perpendicular to it.
The half breadth of the cell is denoted by X. In
the distance Y a plane parallel to x-axis is shown

FiG. 1. Scheme of a cell.
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which bounds a volume for the integral balances
in the upper part of a cell.

For simplicity the following binary system is
considered: the dissolved solid as a single-
component and the liquid consisting of two
components one of which being identical with
that of the dissolved solid. The phase boundary
is impervious to the liquid and no chemical
reaction proceeds between the two components.
The dissolution is consequently governed by a
diffusion in the liquid phase and the solution on
the phase boundary is saturated. A stationary
state and zero heat of dissolution is assumed,
and hence the density gradient is determined
only by the concentration field.

Since the shapes of the cavities remain un-
changed in the stationary state, the vertical
velocity of dissolution remains constant and
can be expressed by the relation (for the deri-
vation of which see Appendix):

_ eD [ oOc
P T oA )y

A

ds

y=0

ity

wheree = (1 — wy(0p/0¢).=,)/(1 — W), wpisthe
saturated mass fraction of the dissolved sub-
stance, p is the local density of the solution, p, is
the apparent density of the dissolved body, c
is the concentration, D is the binary diffusion
coefficient, dS the element of the area and A is
the area size of the phase boundary belonging to
one cell.

Total mass balance and the mass balance of
the dissolved substance may be written for a
volume bounded by the phase boundary, the
vertical walls of the cell and the plane y = Y.
In the stationary state the total mass of the liquid
and the mass of the dissolved substance both
passing across the surface of this volume and
equal to zero. No mass passes the vertical walls
because of a zero horizontal velocity component,
ahd a symmetric maximum or minimum con-
centration on these walls. If neglecting the mass
of the dissolved substance crossing the phase
boundary, as compared with the total mass flow
through the y = Y plane, the continuity equation
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becomes simply

JudS:O. )

A

The dissolved substance crosses both the phase
boundary and the plane y = Y, hence

oc
”f 5

A

ds + jcu ds = 0. (3)
y=0

The flux of the dissolved substance resulting from
diffusion is neglected as compared with that
for the convection on the plane y =Y In
equations (2) and (3) u is the value of the vertical
velocity component of the convection. The area
of the plane belonging to one of the cells is
assumed equal to 4 which is valid when the
cell-cavity depth is small in comparison to its
breadth.

The balance of momentum can be expressed
by the Boussinesq approximation. In the neigh-
bourhood of the phase boundary the convection
is very slow and the inertial term can be ne-
glected. The equation of motion for the vertical
velocity component can be written as follows:

i,
WV =gl - 9 @)

where ¢ = 1/A{ ¢ dS is the mean concentration
at the plane y = Y. The dimensionless length,
the concentration and the vertical velocity com-
ponent are defined by the relations:

E=x/X,n=y/Y, H=Y/X
Y =(co — Weo — )

ull
(@p/0c)(co — coo)gX?

G

pP=

The definition of dimensionless velocity ¢ is
based on the form of equation (4) because no
reference velocity is available.

Introducing equation (5) into equations (1)~
(4), after some arrangement the following equa-
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tions can be obtained:

eD(cq — ¢,,)
) psX ©)
1 uD
X3 == 7
J@pieoe, —cg
fods=0 8)
A
Vip=5—1 9)
where
PO (50 B
A.) ar’ =0
A
1 m
J =7 Y& mo(&,n) dS (10)
‘4
I

4
Connection between equations (6) and (7) gives
for the rate of dissolution:

Y

0 ¥
v= BE(—p(Co — )" DzQW’)

(% (11)

where

B = (1)) (12)

The quantity B defined by equation (12) is only
dependent on both the dimensionless con-
centration distribution and the dimensionless
velocity distribution in the cell.

As is common in the boundary layer theory,
these distributions can be expressed in the form
of simple elementary functions which fulfil the
boundary conditions. For the cell the following
boundary conditions come into question.

On the phase boundary the solution is satu-
rated, ie. ¢ = ¢, and

y=0at n =0 (1)

On the vertical cell walls the horizontal velo-
city component is zero and the vertical velocity
reaches its maximum or minimum (according
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to the flow direction, up or down). The same must
hold in the cell axis:

0@/l =0 at £ =0 and & = 1. (i)

In order to estimate the concentration and
velocity distribution in the cell, the dimension-
less thickness, H, must be specified in terms of
these distributions. The relative concentration
difference between the cell axis and the vertical
cell. wall Ay(n) = y(L,n) — 7(0,7) = (c(0, y) -
c(x, y))/(co — ¢,,) equals zero both on the phase
boundary and in the bulk. It suggests to choose
the distance of the reference plane, y = Y, from
the phase boundary to have the maximum value
of Ay(n) in the reference plane

oAy (n)

—— =0 at 5y = H. (iii)
on

Considering that in this distance the horizontal

velocity component is minimum and may be

assumed zero, the continuity equation gives:

0
-(-/—)QOatr,:H.
o

(iv)

The case when liquid streams up along the cell
axis and down along the cell walls is now dealt
with in detail.

For the dimensionless concentration distri-
bution the following function can be established.

W& n) = (o + 6g($) f(n/H) (13)

where functions g(¢) and f(y/H) hold these
properties:
g(0) =0, g(1)=1

dg($) .
A&é—>0 at e 0,1
f0) =0, f(1)=0 (14)
df(n/H)
din/H) >0 at ne <0,H)

and « and & are constants. It is easily seen that
the conditions (i) and (iii) are fulfilled under

=2z 7 5
7 7 (1)




SOLUTION OF A BODY AT ITS HORIZONTAL SURFACE

In the case of a roll-cell (ie. rectangular cell)
cartesian coordinates are convenient. Then
equations (8)-(10) can be written:

foE mndé =0 (16)
4]
42 H
-—(%(563—~)=)7(H)—v(é,H) 17
.= 6?25,'1) dé
n n=0
(18)

Jr = gv(f, H)p(¢, H) d¢

' 1
HH) = [ 9, H) de.
o
Equation (17) is valid under condition (iv).
Introducing equation (13) into equations (17)
and (18) and employing equation (16) and
boundary condition (ii) it is obtained:

_7(H) f0)
=T (19)
(¢, H) = Ay(H)G(E) (20)
Jx = (AyHP L e1)
where
e 1e¢
G ={fg&)déde - [ff
00 000
1 .
g(&)d&dede — (& - Hfg&)de (22
= g g($)G(E) dé.
The value of By is now:
By = (Lg(f'(0)/f(1)*)* (3(H) Ay(H)/H)2. (23)

In the case of hexagonal cells it is convenient
to replace the hexagon by a circle of diameter
equal to the length of the hexagon side. Then
¢ and n can be regarded as cylindrical co-
ordinates. Accordingly dS = 2X?n¢é déand 4 =
nX?. Equations (8)-(10), rewritten for cylindrical
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coordinates ¢ and #, lead after an analogous
manipulation to the following result:

¥(H) f'(0)
=" 24
5=TH ) (24)
Ju = (Ay(H)’Ly (25)
By = (Lg(f'(0)/f(1)*)* (j(H) Ay(H)/H)? (26)
where
1
Ly=2 g g(&) E(¢) ¢ d& (27)

1 &
1
E@®) =féfg(é)édédé _ 2MEJ
v 0 4] 0 0
1
x g(6) € dE & dE — 3(e? — ) J 4@ ¢ de.
0

In-accordance with experience B can be assumed
as a constant independent of the Rayleigh
number value. However, it is seen from equa-
tions (6) and (7) that the integrals I and J need
not be constant. It is known that the cell size
X decreases very slightly with increasing Ra [3].
Considering for the sake of simplicity X as a
constant and defining

Ray = (9p/oc) (co — ¢) gX*/uD
and
Nux = Ust/(SD(CO - Ccc))’

the integrals I = Nuy and I/J = Ray may vary
with the concentration difference (¢, — ¢,) and
thus with the rate of dissolution v at a given
system. On using equations (19), (21) and (23) or
(24)—(26) the numbers
Nuy = ((H)/H) (f"(0)/f (1))

and

Raj = B}/(L} Ay(H))

are yielded. From this it can be concluded that,
if the horizontal cell size X is constant, the
ratio of the relative mean concentration at
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n = H to the dimensionless eddy layer thickness
P(H)/H increases and the maximum relative
concentration difference Ay(H) decreases with
the increasing rate of dissolution or with in-
creasing Ray while the ratio $(H)Ay(H)/H
remains constant if B is independent on Ray.

The experimental study of the temperature
distribution in the cell in the horizontal liquid
layer heated from below is due to Leontiev
and Kirdyashkin [4]. They found that the
ratio of the cell size to the liquid layer thickness
is equal to 1 in the region of the stability loss
and 2 in the region of Ra > Ra,. It follows
that for the roll-cell H < 3 (the thickness of the
dimensionless liquid layer can be maximally
equal 2H) and for the hexagonal-cell H < |.

The Fig. 7. p. 1465 published by Leontiev
and Kirdyashkin [4] has served to calculate
(H) € 04 and Ay(H) < 05 for the hexagonal
cell.

The constancy of B can be secured, for
example, by j(H) = y(H,) (H/H,)" and Ay(H) =
Ay(H,)(H/H))' " where H, refers to any
reference state. If H, =3,7(H,) =3 and Ay(H ) =
1 is taken for the case of the roll-cell and H,
0-25, y(H,) = 0-4 and Ay(H,) = 05 in the case
of the hexagonal cell,

(7(H) Ay(H)/H) = (7(H,) Ay(H,)/H )

and equals 0-5 and 0-8 for roll and hexagonal

cells respectively.
Consider the most simple model of the
concentration distribution in a cell:

g(&) =¢  fn/H) = n/H. (28)
From equations (19) and (21)~(27) follows that

IVAN BELOHOUBEK
f0)y =1, f(1) =1 Lg = 1;120, L, = 1,270,

0-133. Taking
g&)= ¢, fiyHy=n/H (29)

then Bp = 0:128 and By = 0-149. These two
values for hexagonal cells coincide well with
the empirical formulas for the heat transfer
from the downward-facing horizontal surfaces.
For example Fishenden [S5] reports the rela-
tionship Nu = 0-14 Ra*.

THE PROPERTIES OF THE USED SYSTEMS

For the investigation of the cellular convec-
tion there were used single crystals of blue
vitriol, single crystals of rock salt and a compact
polycrystaline mixture of NaNO, and KNOj,
with the weight ratio 1:0-807: these substances
were dissolved in their aqueous solutions of
different concentrations at 20°C.

The physical properties of blue vitriol and
rocksalt and their aqueous solutions are avail-
able in the literature [ 5, 6] and listed in Table I.

The physical properties of the mixture
NaNQO, + KNO; of weight ratio 1:0-807 and
its aqueous solutions had to be measured. They
are listed in the last row of Table 1.

For the weight ratio 1:0-807 both components
in their aqueous solution are in phase equilibrium
with the two corresponding crystal phases at
20°C. The weight concentration of NaNO,
and KNO, in this saturated aqueous solution
was first determined after Lung, titrating by
KMnO, solution (only nitrite content) and then
the total content of nitrate + nitrite by means
of evaporation residue. It was reasoned that the

Table 1. Properties of the systems used

Diffusion

Viscosity of solution Density of solution

System Density of ~ Saturated
solid concentration  coefficient v. 10? (cm?/s) p (g/em?)
p,(g/em?®) ¢, (g/em?)  at saturated
concentration
D, x .10° (em?'s)
CuSO, .5H,0-H.,0 2-286 0:326 0-:33 1-004 +2-420 0'9882+0'6424CAO'090§C2
NaCl-H,O 2-163 0317 14 1-004 +0-653¢ +3-456c¢*  0-9982 +0-687¢ —0-154¢*
0990 302 1004 +3:170¢3 0-9982 +0-565¢

(NaNO, +KNO,-H,0 2146
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ratio found should ensure the most uniform
dissolution of the polycrystalline compact mix-
ture formed by the same ratio of both com-
ponents.

The densities of the solutions were measured
pycnometrically and the viscosities of the
solutions were measured by the Ubbe’s tube
viscosimeter.

The diffusion coefficient was calculated from
the data of dissolution of a vertical cylindrical
specimen under conditions of the density free
convection along with the following formula:

— Cy ((Po - poo) ng)}

Hoz

p = 0490 £ 2 (30)

Ps

The dissolution rate, v, was measured at five
concentrations, ¢, within the range 0-62-0-87
g/cm3. From the slope of the dependence vz*
on ((¢g — ¢,)/py) ((py — p,,)/ 1o}, found by the
last square method, the effective binary dif-
fusion coeflicient, D,, was obtained.

THE MEASURING OF THE RATE OF
DISSOLUTION

The magnitudes of the dissolved surface area
of single crystals laid within the range of
1-5-4 cm? In the case of blue vitriol single
crystals surfaces of the Miller’s indexes [110]
and/or —[110] were chosen. The specimens of
the NaNO, + KNO, mixture were prepared
by pouring the melt into preheated glass rings
placed on glass plates followed by careful
cooling.

-

F1G. 2. Scheme of the apparatus for the measurement of the
dissolution rate.

aprN —
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The resulting tablets were compact and their
surfaces were perfectly smooth. The surface
areas used for the dissolution experiments were
of a mean magnitude 6 cm?.

The range of concentrations for the solutions
used in dissolution experiments was relatively
wide: from pure water up to (¢, — ¢,) =
10~ 2 g/cm?. The dissolution rate was measured
on an adapted sedimentation balance (Fig. 2).
The part of surface of single crystal or tablet 8
which was not assigned for dissolution was
isolated by paraffin wax 9 served at the same
time for the connection of the dissolved body
with the annulus 7 of the balance beam.

The isolation was made in such a way that
the single crystals were put on a glass plate,
with their surfaces intended for dissolution
faced downwards, and embedded by molten
paraffin wax. In the case of polycrystalline
samples the surfaces intended for dissolution
were protected by a rubber sucker and the
samples were submerged into paraffin wax
melt. The edges of unprotected surfaces were
subsequently adapted by organic plasticine.

The polycrystalline surfaces intended for dis-
solution had circular shapes, and those of blue
vitriol were in rhomboedrical or rectangular
shapes. In the case of the rock salt the shapes of
these surfaces varied to some extent with
different samples.

o 0-4

E

O

~

o

g 03

e

o

+

5 o2

=
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v

[0}

2 o4

-

=y

=
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= |
0 2000 4000 6000

1, s

Fic. 3. Time-dependence of the mass loss of NaNO, +

KNO; specimens at their dissolution in solutions of the

following concentrations in grem®: 0-806 (A), 10-850 (),
0900 (@), and 0:927 (A).
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‘The solution 10 was held at the temperature
20 + 0-1°C under tempering bathing. The change
of the balance sensitivity was realized by the
weight 6 moving on the tongue of the balance 11.
The luminous ray from the light source 1 passed
through the diaphragm 2, rebounded from the
mirror 5 attached on the tongue, and impinged
into the screen 3 equipped with a scale from
which the weight loss of the dissolved body was
read off.

The value of the mass flux density j, was
calculated from the linear part of the time
dependence of the weight loss per unit area by the
last square method. An example of such a
dependence is shown in Fig. 3.

EXPERIMENTAL RESULTS AND DISCUSSION

Taking the logarithm of equation (11) and
using relations j, = pp and ép/éc = (p, —

Pl — C,) gives:
Jo C (Po — Pu)g
log =3 log~——=""= + log B
8I)O(CO - Coo) ? tu'nDO g
(31

Since the viscosity and the diffusion coefficient
are not independent of concentration, the bulk
viscosity, y,,, and the diffusion coefficient of
the saturated solution, D, were used. Equa-
tion (31) is suitable for testing of equation (11)
by means of experimental results.

On Fig. 4 the term j,/eDylc, ~— ¢,,) 1s plotted
vs. the term (p, — p,.)9/u.. Do both in the
logarithmical scale. It is evident that the line
with a slope equal to | is in good agreement
with the experimental points. It should be
noted that the complex quantities used are
not dimensionless, namely the former is equal
to the Nusselt number divided by the charac-
teristic length and the later equals the Rayleigh
number divided by the third power of the
same characteristic length. Regarding to the
exponent % the characteristic length has no
particular meaning and so equation (31) be-
comes consequently equivalent to the relation:

Nu = BRa®. (32)
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/,
log —22—
°9¢ 2lerc,

\d
L
&
o]
Py

~
®
©
3

(BR)9 cmi®
H, 0,
F1G. 4. The dependence of jo/eDylcy - ) on {py — o, )/

1, Dy for the mixtures NaNO, + KNO, (@). monocrystals
CuSO, .5 H,0 ( ) and NaCl (A).

log

The mean value of B calculated as a ratio

Jo _((Po — P9 :
eDolcy — ¢,)) S

is 0151 + 0-014 for all measurements; if cal-
culated for separate systems, then B for the
blue vitriol is 0-137, for the rock salt is 0-14}
and for the mixture of NaNO, + KNO; is
0-165. Figure 5 shows that B is a constant over
the whole range of concentration used.

The dissolved surface developed corrosion
reliefs showing the cellular character of the
convection in the liquid. The most distinct
corrosion cavities were observed on the sur-
faces of the monocrystals (Figs. 6 and 7). When
dissolving in pure water or dilute solutions the
pattern is hexagonal, though the shape of

0
° ° 0.2 o
R e
o>
o
!
| SO S
i J 2 3
log i , cm™
EDO(CGCm)

FiG. 5. Dependence of B on j,/eDylcy — ¢.,).



FiG. 6. The corrosion relief of NaCl, co-co, = 0317 gfcm?, mgt. 8 X.

[facing page 1404)



FiG. 7. The corrosion relief of NaCl, ¢o-c4, - -0-010 g/cm?, mgt. 5
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cavities is considerably irregular. The pattern
changes if the magnitudey of the term
(Po — Po) /1Dy falls under the value of 1 to
410*8 cm ™3 and exhibits then a dependence
on the shape of the dissolved area. The cell
shape is that of rolls lying perpendicular to the
normal direction and pointing to the centre of
the dissolved area. If the shape of the dissolved
surface is circular, the shapes of roll cells are
wedgewise and not rectangular deviating there-
fore from the assumption given in the theoretical
part. This discrepancy, however, is not that
important because the dissolved surface area is
large. No dependence of the cell size X vs the
term

jO/gDO(CO - coo) or (pO - pw)g/uwDO

was possible to establish. The mean diameter 2X
of a hexagonal cell was about 0-06-0-10 cm and
the mean width of a roll was about 0-06-0-16 cm.
That supports the assumption made in the
theoretical part that X can be regarded as a
constant. The estimation of the values of the
maximum relative concentration difference,
Ay(H), and that of the dimensionless eddy layer
thickness, H, were also attempted. Choosing
the value (p, — p.,) g/uDo = 2.10%cm 2 from
the period of transition between rolls and
hexagons and X ~ 0-03 cm, then Ray = 2.10%.
0-03% = 5400and Ay(H) = (B/L)* Ra,.* ~ (0-14.
270)* . 5400~ * &~ 0-35. The Nusselt number Nuy
= BRa} ~ 0-14.5400* = 25 and H = (f(1)/
f'0)) ((H)/Nu,) =~ 0-4/2-5 = 0-16. These results
are in good agreement with estimations
Ay(H) € 0-5 and H < 025 which were used in
the theoretical part.
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APPENDIX
The Mass Transfer Rate at the Moving Boundary

Equation (1) expresses the mass conservation law for the
dissolved substance at its transition from the solid to the
liquid phase. It is valid for the system in which the solid
phase is single-component and the liquid is composed by
two components, one of them being identical with that of the
dissolved substance; the dissolution is governed by the
diffusion in the liquid phase.

In the infinitesimal liquid layer on the phase boundary
the longitudinal convection can be neglected. In this layer
only the diffusion and the cross convection due to the phase
boundary motion occur. The continuity equation for the
dissolved substance takes therefore the form:

vps = jO = _Do(ac/ay)y:() + uyc() (33)

where ¢ is the concentration of the dissolved substance in
the liquid and p is the liquid density. The boundary is
unpermeable for the other liquid component and so

0= —Dyd(p ~ c)/dy |y=0 + uy(Po ~ Co)- (34)

The diffusion coefficients D, are the same in both equations
(33) and (34) because the case of binary diffusion is discussed.
u, is the velocity related to the unmoving coordinates with
which the liquid follows the moving boundary.

Eliminating u, from equations (33) and (34) one obtains:

Jo = ‘Do(ac/aJ’)Fo((l — Wopp)/(1 — wy)) (35)

where w = ¢/p is the mass fraction of the dissolved sub-
stance and pj = (0p/dc), -, Relation (1) is so derived.

Using the well-known thermodynamical relation for the
partial specific volume

V=1/p + (1 — w)(@(1/p)/ow) (36)
where V is the partial specific volume of the dissolved
substance, carrying out the arrangement
o(1/p)fow = &(1/p)/d(c/p)

= — (1/p)@p/oc)/(1 — w(dp/dc))  (37)

consequently

dpféc = (1 — Pp)/(l ~ Vo) (38)
one obtains after introducing the last relation into equation
(35):

Jo = —=Dgl0c/8y), =0 (1 — Vycy) (39)
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which is the relation found by Cooper [5] by a different

method.

Using another arrangement

0c/By = (Oc/ew)(ew/0y) = (p/(1 — wdp/Oc)Hdw/Dy)

PAVEL HRMA and IVAN BELOHOUBEK

Jo = ‘PoDo(ﬁW,/(’]y’;:n/“ - W)

which is currently used in chemical engineering.

=p@w/on)(l = Vo)1 —w)  (40)

DISSOLUTION A LA SURFACE HORIZONTALE D'UN CORPS SOLIDE GOUVERNEE
PAR LA CONVECTION NATURELLE EN MOUVEMENT CELLULAIRE

Résumé—Par la méthode du bilan intégral, on a établi la relation pour la vitesse de dissolution de la surface
horizontale d’un corps solide dans un liquide. La dissolution est ici gouvernée par la convection naturelle
de densité en mouvement cellulaire. On a utilisé comme relations de départ le bilan massique de la substance
en dissolution et le bilan massique total appliqués tous les deux dans le volume cellulaire limité par la
{rontiére de la phase et un plan de référence paralléle. On a employé aussi I"équation exprimant la loi de
conservation de masse pour la substance dissoute traversant la frontiére de la phase et I'équation de
Navier -Stokes dans I'approximation de Boussinesq écrite pour Iétat permanent avec un terme d’inertie
négligeable. La relation résultante pour la vitesse de dissolution s’écrit sous la forme Nu = B Ra?, B étant
une constante pouvant prendre des valeurs entre 0,13 et 0,15. Cette relation a été expérimentée pour trois
systémes: monocristal de sel solide-eau, monocristal de vitriol bleu-eau et mélange polycristallin de
NaNOQO, et KNO;-cau.

On trouve que la dissolution est gouvernée par la convection cellulaire avec le rapport moyen Nu/Ra*

égal 4 0,151 + 0,014. Cette valeur est en bon accord avec I'estimation théorique.

AUFLOSUNG EINES FESTKORPERS AN SEINER HORIZONTALEN OBERFLACHE
BEI FREIER KONVEKTION IN ZELLSTROMUNG

Zusammenfassung—— Mit der Methode des integralen Gleichgewichtes wird eine Beziehung fiir die Ge-

schwindigkeit der Aufldsung eines Festkorpers an seiner horizontalen Oberfliche in Fliissigkeit abgeleitet.

MaBgebend fiir die Auflésung ist hier die freie Konvektion in Zellstrdmung. Ausgangsbeziehungen sind die
Massengleichgewichte der gelosten Substanz und der gesamten Masse, beide in dem Zellvolumen, das
durch die Phasengrenze und einer dazu parallelen Bezugsebene begrenzt wird. Eingefithrt werden weiterhin
die Beziehungen aus dem Massenerhaltungssatz fiir die geldste Substanz beim Uberschreiten der Phasen-
grenze, sowie die Navier-Stokes-Gleichung in der Approximation von Boussinesq fiir den stationdren
Zustand mit vernachlidssigbarem Tragheitsterm. Die sich damit ergebende Beziehung hat die Form:
Nu = B Ra* wobei B eine Konstante zwischen 0,13 und 0,15 ist. Diese Beziehung wurde fiir drei Systeme
experimentell nachgepriift: monokristallines Steinsalz-Wasser, monokristallines Kupfervitriol-Wasser
und NaNO,-KNO, in polykristallinem Gemisch-Wasser. Es wurde gefunden, dass die Auflosung durch
die Fellkonvektion mit einem mittleren Nu/Ra*-Verhiltnis zu 0,151 + 0,014 bestimmt wurde. Dieser Wert
stimmt mit der theoretischen Abschitzung gut iiberein.

PACTBOPEHUE I'OPU30HTAJIBHOM HOBEPXHOCTU TBEPIOI'O TEJA
BCJAEJICTBUE AYENCTON CBOBOJHON KOHBERIIUHU

AHHOTaMuA—C TOMOMILI0 HHTErPaibHOr0 OATaHCHOIO METOXA JIONYUYeHO BBpAMKEHHE 1
CKOPOCTH PACTBOPEHUA 'OPUSOHTAIBLHON IIOBEPXHOCTH TREPHOTO Terla B AUMIAKOCTH. CROpOCTL
PACTROpEHHS OnpeednAercs CBOOOZHON AdYeMcTON KoHBekIMeH. B KadecTBe HCXOMHBIX
ypaBH(‘HHI"’I UCTIOJIB3YIOTCH yYpaBHEHUA COXpaHeHn# GastaHca Macechl, 3aNUCAHHBIC RAR JLJIA
o0beMa AveifKH, OFpAaHMYEHHOTO I'paHullell pasme;a §as, Tak U AJIA INIOCKOCTH CPABHEHUA
napajieapHoOl eif, ypaBHeHHe 3aKOHA COXDAHEHNA KOMYECTBA DACTBODEHHOIO BOINECTBA
HPH TlepeceyeHnH IPAHUIK pasfena u ypapHeHue Hasbe-Crokca B mpubamskennn Byccinecxa
TIA CTAIMOHADHBIX YCJIOBHMIt, KOT/a HHEPLMOHHBI Y7eH MpeHeGperHiMo MAT. Honyqeml{’oae
ypaBHeHHe JUTA CKOPOCTH PACTBOpeHUA NPENCTABJIEHO B cilejylomem Buge : Nu = B . Ra’™,
rie T — mnocroanuasa seamunHa, pasHas 0,13 = 0,15, YpasraeHne mpoBepsoch dKCIEpU-
MEHTAABHO JUISl TPEX CHCTEM ! MOHOKPHCTAIUI KAMEHHOJi COTM-BOA ; MOHOKDICTA/L MEIHOTO
KYIOpOCca-BOMA ; NMOMyKpucTaldnuyeckaa cmech NaNo,—KNOg; — Boja. Oogapymem, qT0
CKOpOCTh PACTBODEHMA BABHCUT OT TYeNCTONl KOHBEKIMM, ONMMCHIBAEMO} OTHOIIEHUEM
Nu/Ra*® = 0,151 +0,014, 410 X0OpOWO COPNACYETCS ¢ TEOPETHYECHHM PACIETOM .

the relation (39) can be rewritten into the {ollowing form:

(41}



